Department of Economics and the Department of Agricultural and Applied Economics

Ph.D. Qualifying Exam, November, 2018

Part 1: Microeconomics

3 Questions, 2 pages

Note: The minutes assigned to each question indicate the weight given to the question. For example, question 1 is 50 minutes out of a total of 180 minutes and thus counts for 5/18 of the grade for this exam.

Problem 1 (50 minutes)

Suppose that there are two types of consumers (H and L) for a firm's product. The proportion of consumers of type L is $\lambda \in (0,1)$. A consumer of type $i \in \{H, L\}$ enjoys the utility $u_i(x,T) = \theta_i v(x) - T$ when consuming the quantity $x \in [0,1]$ of the good and paying a total amount of T for it, where

$$v(x) = \frac{1 - (1 - x)^2}{2}.$$

The firm is the sole producer of this good; and its cost per unit is c, with $0 < c < \theta_L < \theta_H$.

- (a) Assuming a linear tariff (T = px), determine the optimal price p charged by a non-discriminating monopolist. Under which conditions will the monopolist choose to exclude the consumers of type L?
- (b) Consider a monopolist that can distinguish the two types (using some observable characteristic) but may only charge a linear tariff to each type $(T_i = p_i x_i)$, for i = H, L. Characterize the optimal prices p_H and p_L .
- (c) Compute the fully optimal nonlinear tariffs and the corresponding quantities. Interpret your results.

Problem 2 (40 minutes)

Suppose that consumer's preference relation \succsim on $X = \mathbb{R}^2_{++}$ is represented by the following utility function:

$$u(x_1, x_2) = u(x_1) + v(x_2),$$

where $u, v : \mathbb{R}_+ \to \mathbb{R}_+$ are strictly increasing, twice-differentiable, strictly concave functions. Assume that $p_1, p_2, m > 0$.

- Show that the Walrasian demand correspondence $x(\mathbf{p}, m)$ is homogeneous of degree zero.
- Show that Walras' law is satisfied.
- Can one prove that goods are normal? Explain!
- Can one prove that the (uncompensated) Law of Demand is satisfied?
 Explain!

Problem 3 (40 minutes)

Consider a finite normal-form game $\Gamma = \langle N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N} \rangle$. Suppose $\overline{\sigma}_i$ is a dominant strategy and $\underline{\sigma}_i$ is a dominated strategy for player $i \in N$.

- Is $\alpha \overline{\sigma}_i + (1 \alpha) \underline{\sigma}_i$ a dominated or dominant strategy when $\alpha \in (0, 1)$?
- Show that $\overline{\sigma}_i$ is a pure strategy.
- Show that there is no belief $\mu \in \Delta(S_{-i})$ for player i such that $\underline{\sigma}_i \in \beta_i(\mu)$, where $\beta_i(\mu)$ is the set of all best response strategies to μ ; i.e., $\beta_i(\mu) = \arg\max_{\tilde{\sigma}_i \in \Delta(S_i)} \mathbb{E}_{\mu} u(\tilde{\sigma}_i, s_{-i})$.

Problem 4 (50 minutes)

Consider a quantity-setting duopoly with inverse market demand function

$$P(q) = \begin{cases} 1 - q & \text{for } q \in [0, 1]; \\ 0 & \text{for } q > 1 \end{cases}$$

where $q = q_1 + q_2$ is industry output.

The two firms play a two-stage game. At the first stage, firm 1 chooses its output $q_1 \ge 0$. It incurs costs $C_1(q_1) = q_1^2$.

At the second stage, firm 2 chooses its output $q_2 \ge 0$. It incurs costs $C_2(q_2) = q_2^2$.

Firm i's profit is

$$\Pi_i(q_1, q_2) = P(q_1 + q_2)q_i - q_i^2.$$

Now let $q_0 \in (0, 3/7)$ and consider the following pair of strategies:

$$q_1 = q_0; \ q_2(q_1) = \begin{cases} \frac{1}{4}(1 - q_0) & \text{if } q_1 = q_0; \\ 1 & \text{if } q_1 \neq q_0. \end{cases}$$

- (a) Show that this pair of strategies constitutes a Nash equilibrium of the two-stage game for any choice of $q_0 \in (0, 3/7)$.
- (b) Are any of these Nash equilibria subgame perfect? Explain!
- (c) Determine the pairs of strategies that are subgame perfect equilibria.

Department of Economics and the Department of Agricultural and Applied Economics

Ph.D. Qualifying Exam, November, 2018

Part 2: Econometrics and Macroeconomics

Part 2A: Econometrics (3 Questions on 3 pages, 20 minutes each)
Part 2B: Macroeconomics (1 hour, 1 Questions on 2 pages)

Question 1 (20 minutes):

- 1. (a) Explain what an estimator is and why its optimality can only be assessed via its sampling distribution.
 - (b) Explain briefly the following properties of an estimator:
 - (i) weak consistency, (ii) strong consistency, (iii) unbiasedness, (iv) full efficiency. <u>Hint</u>: if it helps, illustrate your answer in the context of a simple Bernoulli model:

$$X_t \sim \text{BerIID}(\theta, \theta(1-\theta)), \ t=1, 2, ..., n, ...$$
 (1)

(c) In the context of this model, discuss whether the following functions constitute possible estimators of θ :

$$\begin{array}{lll} \text{(a)} \ \widehat{\theta}_1 = X_n, & \text{(b)} \ \widehat{\theta}_2 = \frac{1}{2}(X_1 - X_n), & \text{(c)} \ \widehat{\theta}_3 = \frac{1}{3}(X_1 + X_2 + X_n), \\ \text{(d)} \ \widehat{\theta}_{n-1} = \frac{1}{n-1} \sum_{i=1}^n X_i, & \text{(e)} \ \widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i, & \text{(f)} \ \widehat{\theta}_{n+1} = \frac{1}{n+1} \sum_{i=1}^n X_i, \end{array}$$

- (d) Using your answer in (c): (i) state which of the properties (i)-(iv) hold for the different estimators and select the most optimal.
- (ii) Explain why relative efficiency is practically useless when the estimator is inconsistent.
- (e) For the simple Bernoulli model derive the Maximum Likelihood Estimator $\widehat{\theta}_{MLE}$ of θ and state its finite sampling distribution.
 - (f) Explain why the following definition of the Mean Square Error:

$$\mathsf{MSE}(\widehat{\theta}) = E(\widehat{\theta} - \theta)^2 = Var(\widehat{\theta}) + [Bias(\widehat{\theta})]^2, \quad \text{for all } \theta \in \Theta,$$
 (2)

makes no sense in the context of frequentist estimation because of the quantifier for all $\theta \in \Theta$.

Question 2 (suggested time: 20 minutes)

Consider the following linear regression model for observation i:

$$y_i = \beta_0 + \beta_1 s_i + \mathbf{x}_i' \boldsymbol{\gamma} + \epsilon_i \quad \text{with}$$

 $\epsilon_i \sim n(0, \sigma^2), \quad \forall i = 1 \dots n,$ (1)

where y_i is the sales price of a single-family residential home (in dollars), s_i is square footage, \mathbf{x}_i includes a set of additional (exogenous) regressors, and ϵ_i is a typical error term with the usual CLRM properties, as shown in the second line of (1).

Part (a), 10 points

- (a) What does this model imply for the distribution of y_i , and how could this lead to "practical" problems in the current example?
- (b) As given, show $E(y_i|s_i, \mathbf{x}_i)$, where E(.) is the expectation operator.
- (c) What is the interpretation of β_1 with respect to y_i ? Provide mathematical support for your answer.
- (d) If one were to use $\ln y_i$, where \ln is the natural logarithm, instead of y_i in (1), how would that change the interpretation of β_1 with respect to y_i ? Provide mathematical support for your answer.
- (e) If, in addition, one were to use the log of square footage, $\ln s_i$ instead of s_i in (1), how would that change the interpretation of β_1 with respect to y_i ? Provide mathematical support for your answer.

Part (b), 6 points

Now consider another model that uses price divided by square footage as the dependent variable, i.e.:

$$y_i^* = \frac{y_i}{s_i} = \beta_0 + \beta_1 s_i + \mathbf{x}_i' \boldsymbol{\gamma} + \epsilon_i \quad \text{with}$$

$$\epsilon_i \sim n \left(0, \sigma^2 \right), \quad \forall i = 1 \dots n,$$
 (2)

- (a) What is the new interpretation of β_1 ? Assuming diminishing marginal utility of housing space holds for the entire range of square footage found in the data, what would you expect its sign to be?
- (b) Compute the direct effect of s_i on y_i for this model. How is it fundamentally different from all other effects of square footage on price derived in part (a) above?
- (c) At what value of s_i (which may or may not be represented by the data) is this direct effect maximized? Under which additional condition is this indeed a maximum, and how does your answer relate to your argument regarding the expected sign of β_1 from above?

Part (c), 4 points

Somebody suggests using the following mathematically equivalent model to (2) and estimating it via OLS:

$$y_i = s_i \beta_0 + \beta_1 s_i^2 + s_i \mathbf{x}_i' \gamma + s_i \epsilon_i$$
(3)

3,

- (a) How does this model violate CLRM assumptions?
- (b) How could this be addressed econometrically to derive consistent estimates for *all* parameters? Show as much mathematical detail as possible.

Question 3 (suggested time: 20 minutes)

Consider the following true relationship between nitrogen fertilizer (N) and yield (y) for a specific crop, for plot i:

$$y_i = \beta_0 + \beta_1 N_i + \epsilon_i$$
 if $N_i < N^*$
 $y_i = P + \epsilon_i$ otherwise, and $\epsilon_i \sim n(0, \sigma^2)$, $\forall i = 1 \dots n$, (1)

where P is often referred to as "plateau yield," and ϵ_i is a mean-zero normal error with equal variance σ^2 for all i, as shown in the second line of (1). N^* is the amount of fertilizer beyond which yield will simply get "stuck" at the plateau. Throughout this question assume that in an actual application N_i goes from zero to 200, and that N^* , while unknown, is located somewhere towards the middle of this range. Also assume no actual N_i exactly equals N^* .

Further assume $\beta_0 > 0$, $\beta_1 > 0$.

Part (a), 8 points

- (a) Show $E(y_i|N_i)$ for both $N_i < N^*$, and $N_i > N^*$, respectively.
- (b) Graph $E(y_i|N_i)$ for the entire range of N_i , with yield on the y-axis, and nitrogen on the x-axis. Add a few scattered dots around this line to symbolize the actual data points.

Part (b), 6 points

Now assume a researcher is unaware of the true relationship between yield and nitrogen, and simply uses an OLS regression of y_i on a constant and N_i , using the *entire data*, to estimate β_0 , β_1 , and σ^2 .

- (a) Add your best guess for the estimated regression line (= predicted values for yield for the entire data range) to your graph.
- (b) In which directions will the estimates for β_0 be biased? How about for β_1 and σ^2 ? (Verbal answer is sufficient)

Part (c), 6 points

Now assume the researcher knows the general form of the true relationship in (1) as well as N^* .

- (a) How could she use the subset of observations with $N_i < N^*$ and basic OLS to predict plateau yield P? Show some math.
- (b) How would one derive a standard error for this prediction? Show some math. Assume that the estimated variance-covariance matrix for $\hat{\boldsymbol{\beta}} = \begin{bmatrix} \hat{\beta}_0 & \hat{\beta}_1 \end{bmatrix}'$ is given as $\hat{V}_{\boldsymbol{\beta}}$.

Macroeconomics

1 question, 1 hour

[1] Each individual lives for two periods and thus at each time t the economy is composed of the generation t-1 old people and the generation t young people. Population is constant and is normalized at N=1. Each young person receives an endowment of y widgets in the first period of life and wishes to consume in each period.

Output is non-storable and each young person can save only by acquiring money in the first period of life and carrying it over into old age.

The government produces a paper money which has value if everyone assumes it does. The time t money supply is in the possession of the time t old generation (the t-1 young). The nominal (dollar) money supply is fixed at M. Let P_t be the time t dollar price of output. The time t young assume $P_{t+1} < \infty$ and thus each assumes it is worthwhile to save by accumulating money in the first period of life, to be used to buy goods in the second period.

Let m_t^d be the nominal demand for money by a generation t young individual. The young person at time t solves the following utility maximization problem:

$$\max_{c_1, c_2} \ln c_{1t} + \ln c_{2t}$$
s.t. (1) $c_{1t} + m_t^d / P_t = y$; (2) $c_{2t} = m_t^d / P_{t+1}^e$.

In this problem P_{t+1}^e is the time t expected value of P_{t+1} . To simplify the problem, assume individuals have perfect foresight and thus $P_{t+1}^e = P_{t+1}$.

- (a) Determine optimal values for c_{ii} and m_i^d as functions of y, P_i , and P_{i+1} .
- (b) In equilibrium the price level will adjust so that the total demand for money equals the total supply of money (in the possession of the old from generation t-1). Find the equilibrium sequence for the price level starting at t=1.
- (c) Suppose that at time 1 there is an x% increase in the money supply (M increases by x% via a cash grant from the government to the time 1 old.). What happens to the sequence of equilibrium prices?
- (d) What is the real *gross* return from saving in this model? That is, 1 unit of output saved at time t in the form of money will yield how much output in time t+1?
- (e) Suppose there is loans market (or equivalently a bond market) at each time *t*. What is the equilibrium real interest rate in this market?

Now assume endowments are growing, but the money supply is constant. To be specific, assume each individual in the young t+1 generation has an endowment of $y_{t+1} = y_t(1+g)$, g>0. Answer (f)-(h).

- (f) Find the sequence of equilibrium prices starting at t = 1.
- (g) What is the real gross return to saving? Explain.
- (h) Suppose there is loans market (or equivalently a bond market) at each time *t*. What is the equilibrium real interest rate in this market?