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I. Introduction  

 While Constant Elasticity of Substitution (CES) utility functions are a common choice in 

empirical partial and general equilibrium models because they are parsimonious in the number of 

model parameters, they are not well suited for cases where the consumption of a given could 

equal zero.  This is because the uncompensated demand functions derived from a CES utility 

function will equal zero only if the price of that good is equal to infinity or the shift parameter in 

the utility function for that good is equal to zero (e.g., consumers do not wish to consume that 

good).  In order to allow for the possibility of zero consumption, a preference structure must 

allow for the underlying “demand curve” to intersect the price axis.  This will be important when 

assessing the effect of new market access for a particular good.  In that case, initial consumption 

is equal to zero because of the existing policy.  After a change in policy, the good may or may 

not be sold in a particular region or season if its price is less than the consumers’ reservation 

price for that good.  The purpose of this draft is to develop a preference structure that allows for 

zero consumption and how it could be implemented to assess the impact of new market access. 

II. Translog Expenditure Function 

 Following Bergin and Feenstra (2009), one functional form that can allow for zero 

consumption is the trans-log expenditure function.  The unit-expenditure function for the trans-

log is defined by: 

   0

1 1 1

1

2

N N N

j j ij i j

j i j

ln e p ln p ln p ln p  
  

    , (1) 
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where N  is the number of possible products.  If a good is not available or not consumed, its 

price would equal its reservation price.  In order for the trans-log expenditure function to be 

homogeneous of degree one in prices, the following parametric restrictions are required: 

 
1 1

1  and 0 1
N N

j jk

j j

, k , ,N 
 

     . (2) 

Note that because of symmetry (due to Young’s theorem), ij ji  , which then implies that: 

 
1

0 1
N

jk

k

j , ,N


   . (3) 

 Using Shephard’s lemma, the compensated demand functions are: 

 
1

N

i i ij ij

j

s ln p 


  . (4) 

 If preferences are homothetic, then equation (4) is also the uncompensated demand 

function. 

 Now assume that only N of the N  goods are available to consumers.  Bergin and 

Feenstra (2009) show that one may solve for the reservation prices for the  N N  goods that 

are not available in terms of the parameters of the expenditure function in equation (1) and 

observed prices for the N goods that are available.  By substituting these reservation prices back 

into the expenditure function in equation (1), it is possible to derive a “reduced-form” 

expenditure function that is valid for the N available goods.  The parameters of this reduced-form 

expenditure function, which are determined based on observed prices and shares, are then used to 

determine the parameters of the “full” expenditure function for a given set of reservation prices. 
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III. Deriving the “Reduced-Form” Expenditure Function 

 In matrix form, the trans-log expenditure function in equation (1) can be written as: 

   0 0 5lne p ln p . * ln p ln p      , (5) 

where 
0  is a (1x1) scalar,  and p are  1Nx vectors, and   is a  NxN  matrix.  The share 

equations can then be expressed: 

 s ln p   , (6) 

where s is a  1Nx vector of budget shares.  Next, one can partition all vectors and matrices: 

 

1 1 1

2 2 2

1 1 1 1 1 1

1 2 1 2 1 2

11 12

21 22

11 1

11

; ; ; 

;   ;  ; 

N N N

N N NN N N

N

s p
s p

s p

s s p p

s s p p

s s p p






 

 

 

 

  

     
       
     

          
               
          
                    

  
   

  

 

1 1 1

12

1 1

11 1 1 1 1

21 22

1 1

  

  

,N N

N NN N ,N NN

N , N ,N N ,N N , N

N NN N ,N NN

 

   

   

   





    



  
       
     

  
  

      
       (7) 

Note that 11  is a (NxN) matrix, 12  is a  Nx N N 
 

 matrix, 21  is a  N N xN 
 

 matrix, 

and 22  is a    N N x N N  
 

 matrix.   

 By noting that s
2
 equals zero for all elements, one can rewrite the share equations as: 
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 1 1 11 1 12 2s ln p ln p   , (8) 

 2 21 1 22 20 ln p ln p   , (9) 

 From equation (9), one can solve for natural logarithm of the reservation prices: 

    
1

2 22 2 21 1ln p ln p


     . (10) 

Rewriting equation (5) using the partitions defined in equation (7): 

 
  1 1 2 2

0

1 11 1 1 12 2 2 21 1 2 22 20 5

ln e p ln p ln p

. ln p ln p ln p ln p ln p ln p ln p ln p

      

           
 

, (11) 

 Rearranging terms in equation (11) and using equations (8) and (9): 

      1 1 1 2 2 2

0 0 5 0 5ln e p . s ln p . s ln p   
      (12) 

Noting that s
2
 equals zero and  

 

   1 1 1 2 2

0

1 1 1 11 2 12 1 2 2

0

1 1 1 11 1 1 12 2 2 2

0

0 5 0 5

0 5 0 5

0 5 0 5

ln e p . s ln p . ln p

. ln p ln p ln p . ln p

ln p . ln p ln p ln p ln p . ln p

  

   

  

    

         

          
 

 (13) 

 Next, substitute equation (10) into equation (13): 
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     

   

   

   

1
1 1 1 11 1 1 12 2 22 2 21 1

0

1
2 22 2 21 1

1 1
1 1 1 11 1 1 12 22 2 1 12 22 21 1

0

1 1
2 22 2 2 22 21 1

0 5 0 5

0 5

0 5 0 5

0 5

ln e p ln p . ln p ln p . ln p ln p ln p

. ln p

ln p . ln p ln p . ln p ln p ln p

. ln p

  

 

  

  





 

 

            
  

    
  

               
  

     

   

 

1 1
2 22 2 1 2 22 21 1

0

1
1 11 12 22 21 1

0 5

0 5

. ln p

. ln p ln p

    
 




  

           
  

      
  

(14) 

 Using the following definitions: 

  
1

2 22 2

0 0 0 5a .  


   , (15) 

  
1

1 1 2 22 21a  


    , and (16) 

  
1

11 11 12 22 21c


       (17) 

the expenditure function in equation (14) can be written as: 

   1 1 1 11 1

0 0 5lne p a a ln p . ln p c ln p    , (18) 

where it is only a function of the prices of the available goods. 

IV. Calibrating the Trans-log Expenditure Function 

 One drawback of using a flexible functional form, like the trans-log, in empirical 

simulation models is the large number of parameters that must be chosen or calibrated.  After 

imposing homogeneity and symmetry, there are  0 5 1. * N N  independent parameters in 

equation (1).  To reduce the number of parameters that must be chosen by the modeler, we 
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follow the assumption made in Bergin and Feenstra (2009) that the cross-price effects are the 

same for all goods, implying that: 

    and 1ij iii j N         . (19) 

 Note that this assumption is the same employed when using a CES preference structure.  

This leaves only the parameters α0 and  1N   of the αj to be calibrated.  Also note that from 

equation (10), the calibrated values of γ, α0, and αj, along with the observed prices of the 

available goods will determine the value of the reservation price for the “unavailable” goods. 

 From equations (15) and (16), one can see that α parameters in equation (1) are related to 

the a parameters in the reduced-form trans-log expenditure function in equation (18).  Thus, 

calibrating the reduced-form expenditure function is the first step in calibrating the full trans-log 

expenditure function.  To begin the calibration process, start by choosing a value for γ.  To aid in 

this choice, note that γ can be related to the own-price demand elasticity (εii) using equation (19): 

  
 

 
1

1 1
1

ii iii
ii ii ii i

i

s N
s

s N


   

 
      


 (20) 

Once a value of γ has been chosen, then from equation (19), all elements of the Γ matrix are 

identified as well as all elements of the c
11

matrix in equation (17). 

 To illustrate, consider an example where N  = 3 and N = 2.  Using the definitions of Γ
11

, 

Γ
12

, Γ
22

, and Γ
21

: 

 
2

1311 12 11 1211 13 13 23

31 32 2
2312 22 12 2233 33 13 23 23

1 1
c

      
 

       

     
         
      
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 

   

 

 

   

   

2 2

11

2 2

1 1 1 11

11 1

1 1

N N N N
c

NN N

N N

 

    

      

 
                                  

   

Thus, the value of  1N   is added to each element of Γ
11

 to obtain the c
11

matrix. 

 Once the c
11

matrix has been determined, one can use the share equations for the reduced-

form expenditure function to determine the values of a
1
.  Specifically: 

 
1 1

N N

i i ij j i i ij j

j j

s a c ln p a s c ln p
 

      . (21) 

 The final step is then to determine the value of a0: 

  0

1 1 1

0 5
N N N

j j ij i j

j i j

a ln e p a ln p . c ln p ln p
  

    . (22) 

Once a
1
 and a0 are known, then one can use equations (15) and (16) to determine the values of 

α0, and αj, 

V. Determining the Reservation Prices 

 When N  > N, the value of the reservation prices are unknown and must be determined 

using equation (10).  However, due to the linear homogeneity of the expenditure function, it is 

not possible to identify unique values for the α parameters and the reservation price.  To illustrate 

this, again consider the case where N  = 3 and N = 2.  Note that the case where 1N N   will 

be a common occurrence when assessing the impact of a removal of an import ban.  Ignoring the 

parameter α0 for the moment, the three share equations constitute a system of three equations in 

three unknowns:  α1, α2 and lnp3.  In matrix notation, this system can be expressed as: 
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13 1 1 11 1 12 2

23 2 2 12 1 22 2

33 3 13 1 23 2

1 0

0 1

1 1

s ln p ln p

s ln p ln p

ln p ln p ln p

   

   

  

      
       
     
             

 

Note that if you added the first two rows of the above matrix together and multiplied by -1, that 

would be equivalent to the last row in the matrix.  This occurs because by homogeneity, 

 13 23    equals 
33 .  Thus, the matrix is not of full rank and therefore there is no unique 

solution to this system of equations.   

 The following numerical example will illustrate the above discussion.  Consider the case 

where N  = 3 and N = 2.  Goods 1 and 2 are both available to the consumer while good 3 is 

unavailable.  The observed prices and quantities for all goods are given in Table 1.  Assuming 

that γ equals 0.5, and therefore γii equals -1.0, from equation (9) (noting that the natural logarithm 

of one is zero) 
3 3ln p  .  The share equations for goods 1 and 2 are: 

1 1 3 2 2 30 5  and 0 5s . , s .       . 

 Note that because 
1,  

2 , and 
3  must sum to one, from the share equation for good 1: 

 1 1 2 1 20 4 0 5 1 0 2. . .           . 

This shows that the relative difference between 
1  and 

2 is 0.2. 

 The last half of Table 1 provides the values of 
0 , 1,  

2 , and 
3  for three different 

values of the natural logarithm of the reservation price.  Once a reservation price is chosen, this 

implies a value of 
3 .  If the logarithm of the reservation price and 

3  equals zero, then 
1  and 

2 will equal the budget share for their respective good.  If the logarithm of the reservation price 
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and 
3  equals 0.1, then both 

1  and 
2 are scaled down by 0.05 while the opposite is true if  

3  

equals -0.1.  Thus, there are an infinite number of reservations prices that will satisfy the 

observed budget shares and prices of the available goods for the trans-log expenditure function.   

 Without a unique reservation price for a given set of observed prices and quantities for 

the available goods, the question is then how to choose an appropriate reservation price?  One 

approach would be to set the reservation price equal to that of a comparable good that is 

available.  For example, fresh lemons from Argentine are not currently eligible to be exported to 

the United States (unavailable good), but fresh lemons from Chile are exported (available good).  

Given the proximity and seasonal production patterns of these two regions, it is possible that 

consumers may have similar preferences for lemons from Argentina and Chile.  The reservation 

price for Chilean lemons can be determined from its share equation from the “reduced-form” 

expenditure function, denoted as: 

 
1

N

i i ij j

j

s a c ln p


  . (23) 

 To solve for the reservation price, set equation (23) equal to zero and solve for logarithm 

of the price of Chilean (CHL) lemons: 

 

N

CHL CHL CHL, j j

j CHL

CHL

CHL,CHL

s a c ln p

ln p
c



 




. (24) 

VI. Illustration of Calibration Process 

 To illustrate the above discussion, consider the following example where there are five 

existing supply regions of fresh lemons (N = 5) and consumers view lemons from each region as 
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a heterogeneous product.  There is also one supply region (Argentina) whose lemons are not 

available, due to existing SPS regulations (e.g., N = 6).  Table 2 provides the initial prices, 

quantities, and budget shares for the five available varieties of fresh lemons.  If γ = 0.08, then γij 

= 0.08, γii = -0.4, cij = 0.096, (0.08+0.08/5) cii = -0.384.  Using equations (21) and (22), the 

values of ai and a0 can be determined.  These values are listed in the middle portion of Table 2.  

Given those values, the reservation price for Chilean lemons is $1.646/kg or: 

 0 0218 0 0596 0 096
0 4983

0 384

MX ESP OTH US

CHL

. . . * ln p ln p ln p ln p
ln p .

.

    
 


, 

where MX = Mexico, ESP = Spain, OTH = other, and US = United States 

Setting this equal to the reservation price for Argentine lemons, the value of 
ARG  can be 

determined using equation (10): 

 0 08 0 4 0 0542ARG MX ESP OTH US ARG. * ln p ln p ln p ln p . * ln p .          , 

where ARG refers to Argentina.  Then the remaining α parameters can be determined using 

equations (15) and (16): 

0 08
0 0524

0 4

ARG ,i

i i ARG i

ARG ,ARG

.
a a . i MX ,ESP,OTH ,US

.


 


     


 

 
22

0 0 0

0 0524

2 2 0 4

ARG

ARG,ARG

.
a a

* * .





   


. 

 The calibrated values for all α parameters are listed at the bottom of Table 2.  Using these 

parameters, the chosen values of γij and the reservation price for Argentina, and the observed 
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prices for all available lemon varieties in the share equation for the full trans-log expenditure 

function (see equation (4)) yields the observed budget shares listed in Table 2. 

 

Table 1.  Numerical Example of Non-uniqueness of Reservation Prices 

Data Good 1 Good 2 Good 3 

Price 1.0 1.0  

Quantity 4.0 6.0 0.0 

Share 0.4 0.6 0.0 

    

Parameters    

γ 0.5   

γii -1.0   

    

Scenarios 1 2 3 

Logarithm of reservation price -0.1 0.0 0.1 

α3 -0.1 0.0 0.1 

α1 0.45 0.40 0.35 

α2 0.65 0.60 0.55 

α0 ln(10)+0.005 ln(10) ln(10)-0.005 

s1 0.4 0.4 0.4 

s2 0.6 0.6 0.6 

s3 0.0 0.0 0.0 
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Table 2.  Calibration Example for Lemons 

Data     

 Price Quantity Share Log Price 

Region ($/kg) (1,000 MT)   

Mexico 1.089 1.93 0.0163 0.0853 

Chile 1.555 1.81 0.0218 0.4415 

Spain 1.583 0.66 0.0081 0.4593 

Other 1.409 0.16 0.0017 0.3429 

US 1.624 75.56 0.9520 0.4849 

Argentina  0.0 0.0  

     

Parameters a α   

Mexico -0.1169 -0.1277   

Chile 0.0596 0.0488   

Spain 0.0545 0.0436   

Other -0.0078 -0.0186   

US 1.0106 0.9998   

Argentina  0.0542   

     

γ 0.08    

a0 4.3562    

α0 4.3525    

 



 

 

13 

 

References 

 

Bergin, P.R. and R.C. Feenstra.  (2009)  “Pass-Through of Exchange Rates and Competition 

between Floaters and Fixers.”  Journal of Money, Credit and Banking. 41 (S1) (February 

2009): 35-70. 

 


