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Trade Elasticities and Trade Disputes: New Evidence from 
Tariffs and Relative Preference Margins  

I. Background 

Since 1995 and the creation of the World Trade Organization (WTO), world agricultural and 
food trade has increased over three-fold from $575 billion in 1995 to nearly $1.6 trillion in 
2016. Total world trade has grown more than twenty-seven fold in volume terms since 1950 
- more than three times the growth in world output – and tariffs on manufactured 
(agricultural) goods average less than 5 (15) percent in most industrialized nations. Twenty 
new members have joined the WTO since 2001 bringing total membership to 164. These 
accomplishments are often attributed to both multilateral trade liberalization vis á vis the 
WTO in reducing barriers to trade and successfully resolving trade disputes and the 
proliferation of free trade agreements (FTAs) offering preferential tariffs and market access 
to member countries.  

However the ongoing tit-for-tat trade dispute between the U.S. and some of its significant 
trading partners, including North American Free Trade Agreement (NAFTA) members 
Canada and Mexico, China and the European Union (EU) has escalated into what some are 
calling an outright “trade war”.1 To recap, in January 2018, President Trump imposed tariffs 
on washing machines and solar panels. Shortly after, China launched a dumping 
investigation on US Sorghum exports valued at $1 billion in 2016 and $836 million in 2017 - 
a retaliatory policy that was later withdrawn on May 18, 2018. Washing machine and solar 
panel tariffs were followed by the March 1, 2018 announcement by the U.S. that it will levy 
25% tariffs on steel and 10% tariffs on aluminum products for national security reasons 
under Section 232 of the Trade Expansion Act of 1962. On Friday March 23 the steel and 
aluminum tariffs become effective, and at that time, Canada, Mexico, the European Union, 
Australia, Argentina, South Korea, and Brazil were offered exemptions until May 1, 2018, 
representing 63 percent of steel and aluminum trade with the U.S.2  

A day earlier, on March 22, 2018, the Trump administration announced new tariffs on up to 
$60 billion dollars of imports over China’s intellectual property (IPR) practices and forced 
technology transfers. This was immediately followed, and somewhat confusingly so, on 
March 23, 2018 by China’s announced retaliatory tariffs on $3 billion worth of Chinese 
imports from the US in response to US Steel and aluminum tariffs (i.e., not the intellectual 
property announcement from the Trump administration that coincided a day earlier). China’s 
tariff response to US steel and aluminum tariffs went into effect April 2, 2018 and are 
structured as follows: (i) 25 percent tariffs on $2 billion of imports on products such as pork 
and recycled aluminum, and (ii) 15 percent tariffs on $1 billion of imports of products such 
as fresh fruit, dried fruit and nuts, wine, ethanol, ginseng, and seamless steel pipes.3  

                                                
1 https://www.washingtonpost.com/graphics/2018/business/trump-tariff-trade-
war/?noredirect=on&utm_term=.5840432c1ade 
2 https://piie.com/blogs/trade-investment-policy-watch/trumps-long-awaited-steel-and-aluminum-tariffs-
are-just 
3 The State Council Information Office of the People’s Republic of China, April 2018, 

https://www.washingtonpost.com/graphics/2018/business/trump-tariff-trade-war/?noredirect=on&utm_term=.5840432c1ade
https://www.washingtonpost.com/graphics/2018/business/trump-tariff-trade-war/?noredirect=on&utm_term=.5840432c1ade
https://piie.com/blogs/trade-investment-policy-watch/trumps-long-awaited-steel-and-aluminum-tariffs-are-just
https://piie.com/blogs/trade-investment-policy-watch/trumps-long-awaited-steel-and-aluminum-tariffs-are-just
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On April 3, 2018, the Trump administration released its list of 1,333 Chinese products under 
consideration for 25 percent tariffs under Section 301 Trade Act of 1974, covering $46.2 
billion of U.S. imports to address China’s IPR practices and forced technology transfers in 
business relationships. A day later on April 4, 2018, China immediately announced its 
retaliatory list covering 106 products worth $49.8 billion that could be subject to 25% import 
tariffs on products originating from the U.S. in response to the Trump administration’s IPR 
tariffs. Importantly for U.S. agriculture, this list includes soybeans (HS chapter 12), the 
U.S.’s largest agricultural export to China valued at $14.2 billion in 2016 and $13.9 billion in 
2017. The U.S. is second only to Brazil in soybean exports to China valued at nearly $21 
billion in 2017. Together, Brazil and the U.S. exported 88 percent of China’s global soybean 
imports and provide 61 percent of total world soybean imports. Corn, wheat, cotton, beef, 
wine, and a number of other U.S. agricultural product exports were also included on China’s 
product retaliation list.4 

On May 21, 2018, China and the U.S. temporarily agreed to place the trade dispute “on-
hold” after a tentative agreement following meetings in Washington that would see China 
increase its purchases of U.S. products and reduce the bilateral trade deficit.  This followed 
China’s May 18th, 2018 decision to end tariffs on U.S. sorghum imports in response to U.S. 
duties on washing machines and solar panels. Shortly thereafter, however, the White House 
released its revised list of Chinese products subject to 25 percent tariffs, in two phases 
starting July 6, 2018. China Immediately followed by issuing an updated retaliation list of 25 
percent tariffs on U.S. products, 38% of which are agricultural and food products, starting 
July 6, 2018 (Bown and Kolb, 2018).  

After the initial exemptions from U.S. steel and aluminum duties expired on May 1, 2018, 
President Trump offered Canada and Mexico a “final” somewhat conditional one month 
extension to June 1st, 2018 citing the renegotiation of NAFTA and Mexico and Canada 
voluntarily limiting steel and aluminum exports to the U.S.  The EU was also granted a one 
month extension and South Korea was granted a permanent exemption after it agreed to 
limit steel and aluminum exports to the U.S.5 However, negotiations between NAFTA 
partners to date have not succeed and on June 1, 2018, U.S. Commerce Secretary, Wilbur 
Ross, announced that the U.S. will apply 25% steel and 10% aluminum tariffs on Canada 
and Mexico.  Mexico immediately imposed new duties on U.S. steel, pork, cheese, whiskey, 
potatoes, and apples, among other goods, estimated at $3 billion6.  On June 22, 2018, the 
EU activated its previous tariff retaliation threat against the U.S., covering $3.2 billion of 
U.S. products, 30% of which are agricultural and food products in 20177. On July 1, 2018, 
Canada countered the U.S. steel and aluminum tariffs with its own tariff retaliation list 
covering $16.6 billion worth of imports from the U.S.  

Finally, on July 10, 2018, the Trump administration effectively doubled-down on its trade 
dispute with China saying it will impose tariffs on approximately $200 billion worth of imports 
from China and is prepared to levy tariffs on up to $450 billion worth of Chinese products 

                                                
http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/37601/38181/xgzc38187/Document/1626839/1626839.htm 
4 http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/37601/38181/xgzc38187/Document/1626839/1626839.htm 
5 Brazil, Argentina, and Australia were granted indefinite exemptions, pending negotiations with the U.S. 
6 The Ministry of Economy in the Official Gazette of the Federation, Mexico, June 2018,  

http://www.dof.gob.mx/nota_detalle.php?codigo=5525036&fecha=05/06/2018 
7 The European Union, June 2018, http://trade.ec.europa.eu/doclib/docs/2018/march/tradoc_156648.pdf 

http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/37601/38181/xgzc38187/Document/1626839/1626839.htm
http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/37601/38181/xgzc38187/Document/1626839/1626839.htm
http://www.dof.gob.mx/nota_detalle.php?codigo=5525036&fecha=05/06/2018
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covering nearly all U.S. imports from China.  On July 11, 2018, China pledged retaliation 
against the latest tariff threat by the U.S. However, it is unclear whether China will include 
non-tariff measures as a policy tool because its imports from the U.S. at $130 billion are 
one-quarter of the $505 billion the U.S. imported from China in 2017.   

Agricultural products are often caught in the cross-fire of trade disputes rooted in 
manufacturing or non-tariff related measures such as threats to national security for steel, 
aluminum and auto imports, or IPR and technology transfer concerns in business 
relationships. For example, China’s updated list subject to 25 percent tariffs includes grains, 
oilseeds, cotton, pork and beef valued at well over $16 billion and Mexico’s retaliatory list 
includes pork valued at over $1.0 billion in trade between the two NAFTA partners. It 
remains uncertain whether these tariff threats will continue to escalate, or whether the U.S. 
and partner countries will find common ground and de-escalate the trade dispute. Tariffs 
implemented by a large country reduce the price competiveness of agricultural producers in 
exporting countries, raise prices for consumers in the importing country and can lead to 
domestic industry contraction and losses as declines in export market shares can have 
persistent economic effects lasting beyond the initial trade dispute. This is because firms 
delay shipments and investments when trade policy uncertainty rises (Freund et al. 2018). 
However, the extent to which retaliatory tariffs lead to significant trade disruptions and 
domestic producer losses depends critically on the elasticity of import demand or how easily 
importing countries can substitute toward alternative sources of supply. In the language of 
computable general equilibrium modeling, this parameter is often referred to as “micro” level 
elasticity.   

The purpose of this report is to develop an estimation framework that uses cross-sectional 
variation in tariffs and relative preferential tariff margins for a given country-year-product to 
identify the responsiveness of agricultural imports to changes in relative prices as they 
relate to bilateral applied tariffs inclusive of preferential margins. Because of the explosion 
of free trade agreements in world trade since 1995, many of the most significant agricultural 
export suppliers enjoy some sort of preferential tariff treatment in a common import market 
(Sharma, Boys and Grant 2018). Empirical research on international trade flows and import 
demand elasticities has generally not considered how relative preferential margins 
influences bilateral trade particularly when competing exporters are receiving preferential 
benefits of their own with a common trade partner (see for e.g., Hertel et al. 2007; Chaney 
2008; Kee et al. 2008; Hillberry and Hummels 2013; Feenstra et al. 2014). Thus, trade 
depends not only on the direct bilateral applied tariff the U.S. faces in a given import market 
but also on the relative tariff preference competing exporters enjoy in the same market 
(Fugazza and Nicita 2013). In this report, we focus on many, although not all, of the 
agricultural products raised in the list of China and Mexico’s retaliatory tariffs against the 
U.S. to estimate the potential impact of escalating tariffs on China and Mexico imports from 
the U.S. and competing suppliers, and to provide instructive policy implications for the U.S. 
farmers, industries, and policymakers. Our product list includes (Harmonized System (HS) 
product codes in parentheses): soybeans (1201), corn (1005), wheat (1001), rice (1006), 
sorghum (1007), cotton (5201), cheese (0406), apples (080810), pork (0203 and specific 
swine products in 0206) and beef (0201, 0202 and bovine products in 0206).    

Global computable general equilibrium models are undoubtedly one of the most valuable 
methods to uncover the potential gains and losses of trade policy shocks because they are 
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able to represent the world economy in a multi-country, multi-commodity setting to show 
how production, consumption, factor employment, prices and trade flows, calibrated to 
match baseline data adjust to policy shocks such as changes in tariff rates. However as with 
any simulation model, CGE models are built on a number of assumptions to maintain 
internal consistency and are particularly sensitive to the “micro” elasticity of substitution 
measuring how easily goods from one country can be substituted for goods from another – 
a parameter that’s been difficult to estimate. Moreover, recent evidence on the micro 
elasticity has been scant to date, especially for agricultural products. This report aims to fill 
this void for select agricultural products. Key policy questions include: 

1) How sensitive are global agricultural exports to changes in tariffs and relative 
preferential tariff margins?  

2) Are some products more vulnerable than others to tariff threats?   
3) What are the potential trade implications of tariff retaliation against U.S. and global 

farm products?  

II. Commodity Trade Statistics  

The U.S. continues to be the top global exporter of wheat, corn, and sorghum, and ranks 
second in exports of soybeans and pork products since 2013. For example in 2017, the 
U.S. exported 55.32 million metric tons (MMT) of soybean ($21.52 billion), 27.24 MMT of 
wheat ($6.08 billion), 53.04 MMT of corn ($9.56 billion), 1.12 MMT of rice ($0.62 billion), 
5.73 MMT of sorghum ($1.08 billion), 3.25 MMT of cotton ($5.83 billion), 0.91 MMT of beef 
($6.17 billion) and 1.72 MMT of pork products ($4.56 billion). Mexico and Japan are the top 
two importers of U.S. exports of wheat, corn and pork, collectively accounting for 25%, 51%, 
and 49% of U.S. exports on a volume basis, respectively. South Korea and Japan are the 
top two importers of U.S. beef products, collectively accounting for 47% on a volume basis. 
China is the top importer of U.S. sorghum and soybean exports accounting for 57% and 
80% of U.S. exports on a volume basis.8 Mexico, Canada and India are the largest 
destinations for U.S. fresh apples with exports valued at $275, $167 and $97 million, 
respectively, in 2017, and represent 55% of U.S. fresh apple exports globally. U.S. variety 
cheese exports are concentrated in Mexico South Korea, Japan and Australia who 
collectively absorb 60 percent, or $863 million in 2017, of total U.S. cheese exports.         

China’s soybean imports totaled 95.54 MMT worth nearly $40 billion, or roughly 60 percent 
of world soybean imports in 2017. Both the U.S. and Brazil have been important suppliers of 
Chinese soybeans, collectively accounting for 87% of its soybean imports on a volume 
basis (Brazil 53%, U.S. 34%). However, with China’s July 6, 2018 announcement that it will 
apply retaliatory tariffs of 25% on its soybean imports from the U.S., early evidence appears 
to suggest Chinese firms are purchasing more aggressively from the South American 
countries. In addition, China plans to remove import tariffs on animal feed ingredients 
including soybeans from five neighboring Asian countries to promote substitutes away for 
U.S. supplies. Prices of benchmark Chicago soybean futures have slumped about 6 percent 
since news of the latest round of trade tensions broke9, and Brazil soybean cash premiums 

                                                
8 Figures are based on United Nations Comtrade Data, accessed May and June, 2018. 
9 https://www.cnbc.com/2018/07/05/reuters-america-grains-soybeans-close-at-2-12-year-low-as-china-
tariffs-loom.html  

https://www.cnbc.com/2018/07/05/reuters-america-grains-soybeans-close-at-2-12-year-low-as-china-tariffs-loom.html
https://www.cnbc.com/2018/07/05/reuters-america-grains-soybeans-close-at-2-12-year-low-as-china-tariffs-loom.html
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over futures prices have hit a 14-year high (AgriCensus Daily Report, July 2018).  

Taheripour and Tyner (2018) used the Global Trade Analysis Project-Biofuels (GTAP-BIO) 
CGE simulation model to examine increased soybean tariffs by China on U.S. imports. They 
found that Chinese soybean imports from the U.S. could drop by as much 71 percent if 
China were to impose trade restrictions ranging from 10-30 percent additional tariffs. Total 
U.S. soybean exports could fall by 40 percent; total U.S. soybean production could 
decrease by 17 percent; and U.S. soybean producer prices could drop by a more modest 4 
to 5 percent after the tariffs take effect. Note that the 4-5 percent producer price decline is 
much less than the 30 percent policy shock to tariffs. This is because, Chinese buyers will 
seek other more reliable suppliers as relative prices for U.S. soybeans increase due to the 
tariffs. However, greater (lesser) demand for soybeans from competing non-U.S. (U.S.) 
exporters will raise (lower) their soybean export price. Moreover, as competing soybean 
export suppliers (i.e., Brazil and Argentina) reorient soybean trade toward China and away 
from other important markets such as Thailand, Japan, Taiwan and Korea, their demand for 
U.S. soybeans will increase not only because the U.S. relative price of soybeans is more 
attractive but also to backfill soybean imports that were previously supplied by non-U.S. 
competing suppliers. In addition, other macroeconomic factors are at play that are not 
always represented in CGE models such as the ability of bilateral exchange rates to absorb 
part of the retaliatory tariff shocks. In the end, after the initial tariff shock works its way 
through global commodity markets, the price change will depend on both import demand 
elasticities of Chinese and other important soybean importing countries, and the export 
supply elasticities capturing the ability of U.S. and competing suppliers to reorient soybean 
exports to other markets. 

China’s imports of wheat, corn, sorghum, cheese and apples totaled 4.3 MMT (valued at 
$1.1 billion), 2.8 MMT ($602 million), 5.1 MMT ($1 billion), 0.11 MMT ($498 million) and 
0.08 MMT ($127 million) in the global marketplace in 2017, respectively. The U.S. share of 
China’s imports of these five commodities by volume was 36%, 27%, 94%, 12% and 40%, 
respectively. China’s imports of beef products (fresh, chilled, and frozen) totaled 0.695 MMT 
valued at $3.07 billion. Starting June 2017, U.S. beef exports returned to China after a 13-
year ban over mad cow disease (Bovine Spongiform Encephalopathy) that began in 
December 2003. Total beef imports from the U.S. amounted to 2,205 tons valued at $25 
million after the market reopened in the second half of 2017. Mexico imported 0.137 MMT of 
beef products worth of $789 million in the world market in 2017, of which 80.4% was 
supplied by the U.S.  

In 2017, China and Mexico imported 2.6 MMT (valued at $4.69 billion) and 1.1 MMT ($1.98 
billion) of pork products, including all fresh, chilled, frozen, and prepared pork meats. 
Mexico is the largest volume market for U.S. pork accounting for one third of total U.S. pork 
and variety meat exports by volume and 24% by value in 2017 (US Meat Export Federation, 
2018). The U.S. is the dominant supplier of pork and variety meats to Mexico representing 
nearly 89% by volume of Mexico’s total pork imports. Unlike Mexico, the share of U.S. pork 
exports in the Chinese market stands at 13%. According to USMEF, Mexican and Chinese 
markets are important to U.S. pork producers as both countries purchase traditional meat 
cuts as well as pork cuts that are of lesser value to domestic consumers such as raw hams 
and “variety meats” like tongues, ears, snouts, livers and hearts.  
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China’s wheat, rice, and corn imports are subject to an average applied in-quota tariff of 1% 
(65% out-of-quota), a 2% applied tariff on sorghum imports, and a 3% tariff on soybean 
imports. China’s MFN tariffs on cheese, apples, beef and pork imports are 12%, 10%, 12% 
and 20%, respectively. With China’s retaliatory tariffs, U.S. exports of these products will 
encounter an additional 25 percentage points above the normally applied MFN tariff, 
potentially forcing U.S. products to become the least price competitive compared to 
competing suppliers. Similarly, Mexico’s retaliatory duties on pork would erase the important 
duty-free preferential tariff treatment the U.S. enjoys under NAFTA.  Mexico’s retaliatory 
duties on U.S. pork exports increased in two phases - to 10% until July 5, 2018, rising to 
20% thereafter.10  

III. Empirical Methods 

The trade elasticity, or elasticity of substitution across sources of supply (i.e., the Armington 
Elasticity) has been frequently investigated despite difficulty in identification of this parameter 
(see for example, Feenstra 1994; Hummels 2001; Melitz 2003; Hertel et al. 2007; Romalis 
2007; Chaney 2008; Kee et al. 2008; Hillberry and Hummels 2013; Feenstra et al. 2014; 
among others). Trade elasticities are often categorized into two groups based on a nested 
Constant Elasticity of Substitution (CES) preference structure. First, “macro” elasticities 
identify the ease of substitution between domestic and a composite import good. That is, how 
easily can the representative consumer in the importing country shift consumption between 
domestic and imported goods as relative prices change?  The second, and perhaps more 
important elasticity parameter for policy scenarios, is often called the “micro” elasticity 
capturing the degree to which importing countries can substitute between different export 
supply sources. Empirical findings from these studies have shown that the macro elasticity is 
significantly lower, typically close to unity, than the micro elasticity which is often estimated 
to be around 3 or 4. However, these estimates are sensitive to the estimation and 
identification method, the level of product aggregation/disaggregation, the countries included 
in the sample, and the sample period. As we demonstrate in some but not all estimations, the 
micro elasticity is also sensitive to relative preference margins vis á vis competing suppliers, 
the market concentration of imports, and whether importing countries belong to a common 
free trade agreement with export partner countries (i.e., U.S.-Mexico).  

In this report, we focus on the micro elasticity - the import demand elasticity between different 
sources of supply. We assume relative price variation is driven by shocks to tariffs and relative 
preferential tariff margins whereby increasing applied tariffs or a less favorable relative 
preference margin leads to (export) supply changes along the demand curve (i.e. holding 
constant the level of demand in a given year) for a given importer-year-product market. In 
other words, we examine how the volume of import demand for agricultural products from 
different export sources changes in response to relative price changes as measured by 
applied tariffs directly and relative applied tariffs vis á vis competing suppliers. As explained 

                                                
10 It is also worth noting that Mexico’s Ministry of Economy announced the opening of a 350,000 metric 
ton duty-free quota on imported pork leg and shoulder cuts (bone-in and boneless) that will be in effect 
through the end of 2018. The quota is open to Mexican pork processors and imports can be sourced from 
any country eligible to export pork to Mexico. It remains to be seen whether this strategy is an effort to 
diversify export suppliers away from the U.S. or whether the U.S. will be able to continue accessing the 
Mexican import market for pork at the favorable in-quota tariff rate.  
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in the next section, we use applied tariffs matched to trade data to provide updated micro 
import demand elasticities of grains, oilseeds, cotton, cheese, apples, beef and pork products 
for the most recent seven years from 2010-2016.  

Our theoretical model is based on a two-level nested CES preference in Armington structure. 
The aggregate demand for commodity 𝑘 in importing country 𝑗, 𝑄𝑘, is modeled as being a 

CES function of domestic (𝑄𝑘𝐻) and imported (𝑄𝑘𝐹) goods in the first level, while imports from 
different countries (𝑞𝑘𝑐) are combined in a CES function in the second level:  

 

𝑄𝑘 = (𝑏𝑘𝐻𝑄𝑘𝐻

𝜃𝑘 
𝐷

+ 𝑏𝑘𝐹𝑄𝑘𝐹

𝜃𝑘
𝐷

)

1

𝜃𝑘
𝐷

,   𝜃𝑘
𝐷 =

𝜎𝑘
𝐷 − 1

𝜎𝑘
𝐷  

𝑄𝑘𝐹 = (∑ 𝑏𝑘𝑐𝑞𝑘𝑐
𝜃𝑘

𝑐

)

1
𝜃𝑘

,   𝜃𝑘 =
𝜎𝑘 − 1

𝜎𝑘

 

(1) 

The parameters  𝑏𝑘𝐻 and  𝑏𝑘𝐹 represent commodity-specific preference weights on domestic 

versus imported goods, and 𝜎𝑘
𝐷 is the macro elasticity of substitution between domestic and 

imported sources of good 𝑘  in country 𝑗 . 𝑏𝑘𝑐  represents the technology and other taste-
specific characteristics for commodity 𝑘  imported from exporting country 𝑐 , and 𝜎𝑘  is the 
micro elasticity of substitution among imports from different exporters.  

Focusing on the micro elasticity in the second level and suppressing the agricultural 
commodity k subscripts to ease of notation, the import demand equation for importer 𝑗 from 

a particular exporter 𝑖 can be derived and written as follows: 

 𝑞𝑖𝑗 = (𝑏𝑖)
𝜎 (

𝑝𝑖𝑗

𝑃𝑗
)

−𝜎

𝐸𝑗 (2) 

where 𝑞𝑖𝑗 is the bilateral trade volume between exporting country 𝑖 and importing country 𝑗 

for commodity 𝑘; 𝑝𝑖𝑗 is the landed destination price of the exporter’s commodity 𝑘 sold in 

importing market 𝑗, it can be rewritten via the price linkage equation as 𝑝𝑖𝑗 = 𝑝𝑖(1 + 𝜏𝑖𝑗) 

where 𝑝𝑖 is the factory gate prices charged by exporter country 𝑖 that are invariant with 
respect to destination markets; 𝜏𝑖𝑗 includes tariff and trade costs that are specific to 

commodity k and vary bilaterally; 𝑃𝑗 = (∑ 𝑏𝑖
𝜎(𝑝𝑖𝑗)

1−𝜎
𝑖 )

1/(1−𝜎)

 is the CES price index over 

multiple sources for the importing country 𝑗; and 𝐸𝑗 denotes total import expenditure for the 

importing country 𝑗 on commodity 𝑘.  

Multiplying by landed destination prices 𝑝𝑖𝑗 = 𝑝𝑖(1 + 𝜏𝑖𝑗) and taking the logarithm of 

equation (2) with the addition of time period subscripts to denote the panel nature of the 
data yields our baseline empirical model:  

 
ln 𝑉𝑖𝑗𝑡 = ln 𝑝𝑞𝑖𝑗𝑡 = 𝛼𝑖𝑡 + 𝛼𝑗𝑡 + (1 − 𝜎) ln(1 + 𝜏𝑖𝑗𝑡) + 𝜀𝑖𝑗𝑡 

𝛼𝑖𝑡 = 𝜎 ln 𝑏𝑖𝑡 + (1 − 𝜎) ln 𝑝𝑖𝑡 

(3) 
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𝛼𝑗𝑡 = 𝜎 ln 𝑃𝑗𝑡 + 𝐸𝑗𝑡 

where 𝑉𝑖𝑗𝑡 is the bilateral import of country 𝑗 from exporter 𝑖, 𝛼𝑖𝑡 and 𝛼𝑗𝑡 are exporter-specific 

and importer-specific time-varying fixed effects to control for all potential time-varying country-
specific unobserved effects including exporter production capability (𝑏𝑖𝑡), import expenditure 
(𝐸𝑗𝑡), multilateral prices and trade costs specific to each importing and exporting country such 

as non-tariff regulations that importing countries notify to the WTO and export taxes or 
subsidies that are independent of origin or destination market, respectively.  

Note that in equation (2) the trade between exporter 𝑖 and importer 𝑗 depends on not only the 

bilateral trade cost 𝑝𝑖𝑗 but also on relative trade costs (𝑝𝑖𝑗/𝑃𝑗) = (𝑝𝑖(1 − 𝜏𝑖𝑗)/𝑃𝑗), relative to 

multilateral prices with all partners in the rest of world in a given importing country 𝑗. Hence, 
to control for the tariff component of the relative trade costs, we incorporate an index of 
bilateral relative preferential margin (RPM) in the model measuring the advantage that an 

exporting country 𝑖 has in exporting its commodity 𝑘 to a destination country 𝑗 compared to 
competing exporters (not including 𝑖) in that market (Hoekman and Nicita 2008; UNTCAD 
2011).  

Specifically, the formula for calculating RPM is written as: 

 𝑅𝑃𝑀𝑖𝑗 = (1 −
(1 + 𝜏𝑖𝑗)

1
𝑁 − 1

∑ (1 + 𝜏𝑟𝑗)𝑟,𝑟≠𝑖

) ,   𝑖 = 1, … , 𝑁 (4) 

There are two ways to calculate the RPM. One is to use a trade share weighted average of 
the denominator in equation (4) to compute the average tariff faced by competing suppliers 
in j’s import market, and the other method is to use simple averages of bilateral tariffs faced 
by competing suppliers. In this study, we use the simple-average RPM to avoid the 
endogeneity issues of zero trade flows associated with prohibitive tariffs. However, it is noted 
that the simple-averaged RPM should be viewed as the upper bound threshold of RPM values 
compared to an RPM based on trade weights.  

The interpretation of equation (4) is straightforward. A positive valued (negative) RPM index 
implies that exporter 𝑖  enjoys a relative tariff advantage (disadvantage) in its exports of 
commodity 𝑘 to destination country 𝑗 compared to its competing exporters (𝑟 ≠ 𝑖) in a given 
import market. For example, the numerator in equation (4) is China’s Most Favored Nation 
(MFN) tariff of 3% faced by U.S. soybean exports. The denominator is the counterfactual tariff 
if soybean exports were to originate from other competing suppliers, some of which enjoy 
duty free preferential tariff in China such as free trade agreement partners in the Association 
of Southeast Asian Nations (ASEAN), Chile, New Zealand, and more recently, Australia. The 
counterfactual average tariff on competing suppliers exclusive of the U.S. is 2.3% in 2017. 
The relative preferential margin is the difference between the simple-averaged preferential 
tariff imposed by China on U.S. soybeans and the counterfactual tariff, which is calculated as 

1 −
1+3%

1+2.3%
= −0.68%. Thus, U.S. soybean exports to China exclusive of any retaliatory tariffs 

are disadvantaged, on average, as the RMP index is less than zero. If the tariff goes up from 
3% to 28% because of China’s retaliatory tariff of 25%, the corresponding RPM for U.S. 
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soybean exports to China is −25.12%, which implies a significant disadvantage for U.S. 
soybean suppliers when compared to competing suppliers.  

In addition to relative tariff margins, we also control for market structure as some destination 
markets such as China’s soybean imports are dominated by just a few exporters (the U.S. 
and Brazil) while other markets are comprised of many exporters. The market concentration 
index or Herfindahl-Hirschman index (HHI) is incorporated into the model estimation. For the 

importer 𝑗 of commodity 𝑘, the index is calculated as 𝐻𝐻𝐼𝑗𝑘 = ∑ (𝑠1𝑗𝑘
2 + 𝑠2𝑗𝑘

2 + ⋯ + 𝑠𝑖𝑗𝑘
2 + ⋯ )𝑖 , 

where 𝑠𝑖𝑗𝑘
2  is the square of importer 𝑗’s share of commodity 𝑘 imports from exporter 𝑖, 𝑖 =

1, … , 𝑁. The HHI increases as the number of competing suppliers in the destination market 
decreases and as the disparity in size between those suppliers increases. In other words, the 
HHI index is increasing in the market concentration of destination market 𝑗 ’s imports of 
commodity 𝑘.  

Econometric estimation of the commodity-specific micro trade elasticities follows the 
empirical implementation of gravity models in Hertel et al. (2007). Different from Hertel et al. 
(2007) which used trade and tariff/freight data from 1994 and 1990, respectively, (see 
Hummels 1999) and an identification strategy of within-sector variation in these trade costs, 
we collect more recent trade and tariff data to reflect current patterns in international 
agricultural trade. We use an identification strategy that exploits cross sectional variation in 
tariffs and relative preferential tariffs conditional on time-varying importer- and exporter-
specific intercept shifters. With the proliferation of free trade agreements offering preferential 
tariffs and market access to member countries (Grant 2013; Grant et al. 2017), it is likely that 
a significant portion of agricultural trade can be explained by examining relative preference 
margins. Moreover, Hertel et al. (2007) aggregated import demand for all commodities in a 
GTAP sector, which include multiple HS 4- and 6-digit codes and used importer-by-
commodity and exporter-by-commodity intercepts by stacking commodity imports for a given 
year. Instead, we estimate commodity-by-commodity equations in HS 4-digit (and some HS6-
digit) codes to provide more specific micro elasticity estimates.  

Finally, we improve on previous elasticity studies in the estimation strategy. Because the log 
of zero is undefined in equation (3), the dependent variable is limited to country-pairs where 
trade is strictly positive (Santos-Silva and Tenreyro (SST) 2006; Helpman, Melitz and 
Rubinstein 2008; Peterson et al. 2013; Grant 2015). However, if prohibitive tariffs or other 
unobservable non-tariff trade barriers exist, countries may not export to a given trade partner. 
This explains why zeros may exist in the trade data, but not for random reasons.  The Poisson 
Pseudo-Maximum Likelihood (PPML) model is an appealing alternative that is robust to 
different patterns of heteroscedasticity and provides a natural way to address sample 
selection issues arising from the omission of zero trade flows (SST 2006, 2011; Yotov et al. 
2016). Moreover, the PPML model is the preferred specification for structural gravity 
estimation in both partial (as in this study) and general equilibrium (Yotov et al. 2016). The 
PPML method estimates the gravity equation multiplicatively without taking the logarithm of 
𝑉𝑖𝑗𝑡 provided the conditional mean and variance are proportional.  

IV. Data  

Import value and quantity data for soybeans, corn, wheat, rice, sorghum, cotton, cheese, 
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apples, pork and beef for the top 75 agricultural trading countries from 2010 to 2016 are 
collected from the UN Comtrade Database11. The bilateral Most-Favored Nation (MFN) tariff 
and average applied tariffs inclusive of numerous preferential rates operating within free trade 
agreements are collected from International Trade Centre – Market Access Map (ITC- 
MacMap) Database12. Other trade related variables (such as the bilateral distance, common 
border, common language, common regional trade agreement (RTA), etc.) are retrieved from 
Centre d'Etudes Prospectives et d'Informations Internationales (CEPII)13.  

Table 1 above presents descriptive summary trade and tariff statistics relating to China and 
Mexico’s imports of the 10 products of interest in this study. As is shown in Table 1, the U.S. 
has been a significant export supplier of soybeans, wheat, corn and sorghum and to a lesser 
extent rice, cotton, cheese and beef to China, and almost all selected products in Mexico in 
the past five years. For example, shares of imports from the U.S. are generally higher than 
one-third in the Chinese market and over two-thirds in the Mexican market. Comparing the 
tariff rates in the two countries, we find that China has a more stringent tariff requirement than 
Mexico, especially for wheat, corn, rice and cotton (using out-of-quota tariff rates). However, 
the tariff schedule for soybeans, cheese, apples, beef and pork imports are relatively lower 
in China compared to Mexico on an MFN basis. On the other hand, the RPM indices for most 
U.S. products in China are almost always negative, implying that U.S. exports face a relative 
tariff disadvantage compared to other competing suppliers in the Chinese market. 
Conversely, in Mexico, the RPM index for all products are positive, indicating a strong relative 
preferential margin for U.S. agricultural products as a result of NAFTA compared to other 
suppliers in the Mexican market. The largest positive RPM values (exclusive of any retaliatory 
tariffs), in Mexico’s import market are for cheese and wheat, reflecting relatively high MFN 
tariffs faced by competing exporters that do not enjoy any preferential tariff advantages in the 
Mexican market. 

In column 6 of Table 1 we report the post-retaliatory RPM the U.S. would face after the 
implementation of China’s 25% tariff on all selected products and Mexico’s 20% tariff on pork.  
As expected, the U.S. RPM in China worsens, implying a more severe competitive price 
disadvantage for all products exported from the U.S. to China.  Similarly, Mexico’s imposition 
of a 20% retaliatory tariff on U.S. pork exports essentially erases all preferential advantage 
the U.S. has enjoyed under NAFTA.   

In the final column we report the HHI index of market concentration in China and Mexico for 
each product impacted by retaliatory tariffs. In China, the average HHI for corn and 
sorghum imports are relatively high, meaning that China’s imports of these two commodities 
are concentrated with fewer but larger export suppliers. The average HHIs for soybean, 
wheat, rice and beef imports are moderately concentrated while that for cotton, cheese, 
apples, and pork imports are relatively lower. Different from China, the average HHIs for all 
products except wheat are considerably higher in Mexico, implying a highly concentrated 
market environment given its proximity to the U.S. Given the diverse market structure and 
concentration levels in China and Mexico, we might expect the estimated trade elasticities 
for China and Mexico will be different, depending on their specific HHI. In other words, HHI 

                                                
11 https://comtrade.un.org/db  
12 http://www.macmap.org/QuickSearch/FindTariff/FindTariff.aspx?subsite=open_access  
13 http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp  

https://comtrade.un.org/db
http://www.macmap.org/QuickSearch/FindTariff/FindTariff.aspx?subsite=open_access
http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp
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will be one of the factors that may affect the estimated import demand elasticities and 
substitution possibilities.   

Table 1: Summary statistics for China and Mexico imports and tariff details (2012-2016) 

 
Global 
Imports 

($ million) 

Imports 
from U.S. 
($ million) 

Avg. MFN 
Tariff  
(%) 

Avg. 
Applied 
Tariff  
(%) 

U.S. RPM 
(%) 

U.S. RPM 
after Tariff 
Retaliation 

(%) 

Avg. HHI 
(%) 

China 

Soybean 36,450 14,250 3.0 2.3 -0.62 -25.04 36.97 

Wheat 1,123 434 65.0 1.0 -0.03 -24.79 41.33 

Corn 1,020 595 42.5 0.5 0.00 -22.62 75.71 

Rice  1,293 0.037 65.0 0.9 -0.11 -24.89 42.17 

Sorghum 1,286 1,068 2.0 0.9 -0.07 -24.84 80.00 

Cotton 5,874 1,775 16.1 15.2 -0.76 -22.51 26.67 

Cheese 305 46 12.0 10.8 -0.01 -24.13 26.42 

Apple 104 31 10.0 9.1 -0.02 -25.19 32.92 

Beef 1,539 0.021 15.9 13.0 -3.15 -25.31 48.19 

Pork 1,556 280 15.3 14.0 -2.20 -22.83 28.38 

Mexico 

Soybean 1,865 1,654 5.0 2.1 2.43 2.43 81.92 

Wheat 1,237 844 45.0 42.3 30.29 30.29 51.39 

Corn 2,519 2,376 3.0 2.4 2.39 2.39 90.02 

Rice  371 317 2.5 2.2 2.24 2.24 74.33 

Sorghum 224 191 0.0 0.0 0.00 0.00 87.56 

Cotton 404 402 3.3 1.1 1.37 1.37 99.13 

Cheese 481 375 71.7 62.5 39.90 39.90 52.70 

Apple 393 275 20.0 10.0 5.42 5.42 90.71 

Beef 856 739 22.9 10.6 10.66 10.66 64.23 

Pork 1,273 1,126 16.7 6.1 5.95 -11.88 78.65 

Notes: Most of listed products are reported in HS 4-digit codes, including soybeans – HS 1201, wheat – 
HS1001, corn – HS 1005, rice – HS 1006, sorghum – HS 1007, cotton – HS 5201, cheese – HS 0406, 
fresh apples – HS 080810, and fresh and frozen beef – HS 0201 & 0202 and select bovine products from 
0206. Since Mexico imposed retaliatory tariffs on U.S. pork products consisting of HS 0203, 160241 & 
160242, we report the trade and tariff details of these three HS codes. Average MFN tariff and average 
applied tariff are reported in HS 4-digit that aggregated from products in HS 6-digit codes where specified. 
For average MFN tariff on wheat, corn and rice imports in China, we report the average out-of-quota tariff 
rate. For average applied tariff on wheat, corn and rice imports in China, we report the average applied 
in-quota tariff rate. The calculation of U.S. RPM after retaliation is based on an additional tariff of 25% 
that China will impose on U.S. soybeans, wheat, corn, rice, sorghum, cotton and pork, and an additional 
tariff of 20% that Mexico will impose on U.S. pork products due to trade retaliation.  
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5. Discussion 

The results are organized as follows. In the first sub-section we present the global 
commodity import demand elasticity results using direct and relative preferential tariff 
margins. The results are first presented without considering market concentration levels or 
possible interaction effects between tariffs and market concentration. These are contained 
in Table 2 along with robust standard errors to clustering on country-pairs. Tables 3 and 4 
present the results with explicit controls for market concentration using the HHI index and 
the interaction of market concentration with tariffs and relative preferential margins. In 
subsection two, we use the tariff elasticity marginal effects to evaluate the predicted trade 
effects from changes in relative prices as they relate to tariff changes.  

5.1 Estimated Trade Elasticities 

Table 2 presents the estimated trade elasticities using direct applied tariffs and the RPM. All 
estimated coefficients are negative in the case of tariffs, as expected since higher tariffs 
reduce trade, all else constant, and significant at the level of 5% level. Conversely, the RPM 
coefficients are positive, as expected, and indicate that more advantages preferential 
margins in a given import market lead to higher levels of bilateral trade in each commodity 
holding all else constant. Recall that the trade elasticity, 𝜎, equals one minus the estimated 
coefficient of tariff.  

Table 2: Estimated trade elasticities using tariff or RPM 
 Trade elasticities using tariff Tariff elasticities using RPM 

Obs. 
Est. Std err. Est. Std err. 

Soybean 6.537* (2.419) 6.643* (2.733) 4512 

Wheat 7.979*** (0.859) 8.983*** (1.044) 4884 

Corn 13.005*** (3.502) 17.046*** (3.908) 7131 

Rice 16.559*** (1.110) 17.026*** (1.166) 8402 

Sorghum 29.170** (8.582) 38.351*** (10.066) 1976 

Cotton 4.738*** (1.114) 30.752*** (6.552) 4865 

Cheese 8.683*** (0.599) 7.554*** (0.496) 10598 

Apple 13.042*** (1.287) 14.168*** (1.043) 7607 

Beef 8.865*** (0.366) 7.279*** (0.319) 8503 

Pork 5.416*** (0.403) 5.107*** (0.417) 26052 

Note: Standard errors in parentheses, * p<0.05, ** p<0.01, *** p<0.001. The model estimation 
includes HS 4-digit codes, mainly HS 1201, 1001, 1005, 1006, 1007, 5201, 0406, 080810, and 0201, 
0202, 0203, and 0206. 
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In terms of commodity specific differences in trade elasticities, sorghum import demand is 
the most price elastic, suggesting that imports are the most sensitive to changes in import 
prices as they relate to tariffs. For example, a 1% change in the price of sorghum imports 
could lead to a 29.2% change on average in sorghum imports, which could be substituted 
by products from other importing sources. Corn, rice and apple import demand is also very 
elastic to changes in tariffs, with an elasticity of 13, 16.6 and 13, respectively.  Soybeans, 
wheat, rice, cheese, beef and pork import demand are relatively less elastic ranging from 
4.7 to 8.9 by exploiting variation 

in applied tariffs, meaning that competition across sources of supply is not as “tough”. Given 
the relatively large standard errors, the 95% confidence intervals suggest that the trade 
elasticity for soybeans could be as high as 8.9 or as low as 4.1 with a mean of 6.5, 
representing the large variation in our data sample.  
 
Note that in order to draw policy implications from the estimated elasticities and possible 
tariff increases by 20-25% on U.S. products, we have to know something about the final 
relative price changes of U.S. products in China and Mexico which are likely significantly 
less than the initial tariff increase. This is because higher tariffs imposed by China and 
Mexico will lead to lower demand for U.S. products and thus lower origin prices. Further, as 
importing countries substitute away from US products and toward competing suppliers, 
demand for non-U.S. products increase effectively raising origin prices in competing 
suppliers. Thus, in the end, the tariff induced relative price increase on U.S. products will 
likely be much lower than the full 25% retaliatory tariff increase14. If, for example, the 
effective tariff-induced relative price of U.S. soybeans increases by 5% in the long run, 
China’s demand for soybeans from the U.S. could drop by 32.7% (the 95% confidence 
intervals lie between 20.59% and 44.78%), suggesting a significant shift in China’s soybean 
import profile. 

As the tariffs faced by a given exporter increase, the RPM for that exporter relative to other 
sources decreases, making it less price competitive (i.e., a relative tariff disadvantage). 
Using RPM variation, we find that corn, rice, sorghum and cotton imports are quite sensitive 
to changes of relative tariff preferences. Recall from the discussion of equation (4), the RPM 
is a proxy for the tariff component of relative prices. The estimated relative trade elasticities 
in Table 2 range from 5.1 to 38.4 at the mean. Soybean, beef, pork and cheese imports are 
less sensitive to RPM changes, compared to the other commodities, with estimated trade 
elasticities ranging from 5.1 to 7.5. On average, there is more sectoral variation (and larger 
standard errors) in these estimated trade elasticities using RPMs than those using tariff, 
which is reasonable as a change in one tariff can lead to relatively larger changes in the 
RPM.  

In Hummels (1999), they find significant estimates for over 90 percent of the products in 62 
GTAP categories with an average value of 5.6, with most falling in range from 3 to 8 using 
ordinary least squares (OLS) estimates, and an average value of 9.3 using nonlinear least 

                                                
14 Taheripour and Tyner (2018) find that the price impacts of the 25% Chinese tariff on the U.S. 
agricultural products are limited, according to the simulation results obtained from the GTAP-BIO model. 
The U.S. producer price for soybeans drops by about 4% to 5% in response to the 25% Chinese tariff. 
The destination price for U.S. soybean exports to China thus increase by about 20%, less than the 
increase of the retaliatory tariff.  
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squares (NLS) estimates (GTAP 5 Database). The most recent release of GTAP (GTAP v9) 
the OLS estimated elasticities for oilseeds (osd), cereals (gro), wheat, rice, bovine meat 
products (ctl), vegetables fruits and nuts and dairy are 4.9, 2.6, 8.9, 10.1, 4.0, 3.7, 7.3, 
respectively. Using the same data while exploiting within-sector variation in tariffs and 
freight/transport costs in each of the 40 GTAP categories, Hertel et al. (2007) find the 
simple average of the 40 GTAP categories is 7.0 (GTAP 9 Database). Kee et al. (2008) use 
a semi-flexible translog GDP function approach to estimate the import demand elasticities 
over 4,900 HS 6-digit goods traded among 117 countries for the period 1988-2001. They 
find an average import demand elasticity of -3.12 (thus the elasticity of substitution would be 
3.12) for a broad group of countries. Tokarick (2010) uses a general equilibrium model from 
international trade theory, which is similar to the GDP function approach in Kee et al. 
(2008), to estimate import demand and export supply elasticities for a large number of low, 
middle, and upper income countries in both short-run and long-run analysis (GTAP 6 and 7 
Database for the year 2001 and 2004). He finds the overall import demand elasticity at the 
mean is -0.8 in the short-run and -1.1 in the long run. Our methodology follows closely 
Hummels (1999) and Hertel et al. (2007) using more detailed product descriptions. Our 
results are consistent with these studies although the elasticity estimates presented here 
are often much larger in absolute value compared to previous findings given the more 
disaggregated commodity specific focus of this study.  

Table 3 presents the estimated trade elasticities using RPM variation interacted with HHI. 
Higher HHI scores implies lower market competitiveness (less competing suppliers) in the 
destination market while a lower HHI means high market competitiveness (more competing 
suppliers). In this section, we are able to consider how and to what extent the estimated 
trade elasticities vary at different market concentration levels in each destination market.  

The results in Table 3 suggest that market concentration plays an important role in 
determining some of the trade elasticities, particularly in the estimation of soybean, wheat, 
cheese and beef trade elasticities where the interaction coefficient of RPM and the HHI 
index is statistically significant. In general, the more concentrated is the destination market 
(i.e., fewer suppliers competing in a given market reflecting a higher HHI value), the higher 
is the estimated trade elasticities of substitution (Table 3).  

5.2 Predicted Trade Analysis 

Interpretation of the coefficient of a dichromatic interaction term is straightforward while that 
of a continuous interaction term needs further examination. To better interpret the 
interaction terms and understand how market concentration affects trade elasticities, we 
plot the predictive margins at a given range of RPM with respect to different HHI levels in 
each product estimation (Figure 1 to 8 in the Appendix)15. The panel on the left depicts the 
average predictive margins of RPM change across all 75 agricultural exporting countries in 
the WTO. The panel on the right depicts the average predictive margins of RPM change 

                                                
15 Notably, the confidence intervals are omitted in these figures as our data sample exhibit very large 
confidence intervals given the large cross-sectional variation. Moreover, the variation of RPM (and tariff) 
are much smaller as compared to the variation of bilateral trade imports, thus, the predictive margins with 
extreme values of RPM are out of sample prediction very large confidence intervals.  
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over the top five exporting countries. 

Table 3: Estimated trade elasticities using RPM interacted with HHI  
 RPM HHI  RPM # HHI 

Obs. 
 Coef. Std err. Coef. Std err. Coef. Std err. 

Soybean -7.361 (5.39) 0.426 (0.489) 21.661* (9.406) 4512 

Wheat 3.875 (2.474) -0.15 (0.538) 11.794* (4.873) 4884 

Corn 14.591 (7.584) 0.254 (0.441) 3.842 (14.02) 7131 

Rice 19.250*** (1.198) 0.111 (0.499) -7.228 (5.467) 8402 

Sorghum 46.545 (26.862) -0.301 (1.079) -10.274 (28.478) 1976 

Cotton 30.703* (13.276) 0.94 (0.694) -0.318 (20.447) 4865 

Cheese 3.694** (1.177) 0.858 (0.806) 15.996*** (3.801) 10598 

Apple 14.148*** (1.852) 0.152 (0.571) 0.033 (3.207) 7607 

Beef 5.979*** (0.482) -0.584* (0.265) 5.775*** (1.733) 8503 

Pork 6.380*** (0.85) -1.149*** (0.236) -3.213 (1.999) 26052 

Note: Standard errors in parentheses, * p<0.05, ** p<0.01, *** p<0.001. The model estimation 
includes HS 4-digit codes, mainly HS 1201, 1001, 1005, 1006, 1007, 5201, 0406, 080810, and 0201, 
0202, 0203, and 0206. 

On average, the predictive margins of these imports are increasing in the RPM at all levels 
of HHI. When comparing the two panels in each figure, it is important to note that the 
magnitudes of predictive margins on the vertical axis are much greater for all graphs that 
only consider the top 5 exporters. For example, the average predicted imports for top 5 
exporting countries are 2 to 10 times larger than the average predicted imports for top 75 
country-pairs for a given change in the RPM and HHI.  

At lower levels of the HHI, the change in the predictive trade margins are more stable for all 
listed products except rice and sorghum. As the importing market becomes more 
concentrated, however, the change in the predictive import margins become more 
significant. Looking closer, we find that there is a threshold RPM level for which the effect of 
market concentration on the predictive trade margins of soybean, wheat, rice, beef, apples 
and cheese imports reverses (i.e., the point of intersection). For example, when RPM is 
above the threshold, soybean, wheat, rice, cheese, apple and beef imports decline faster for 
a given decrease in the RPM for the average country-pair the higher is the market 
concentration in the importer market. For rice, sorghum, and apple imports, the predictive 
trade margins decline faster for a given fall in the RPM the less concentrated the importer’s 
market is. Generally, as the destination market is more concentrated with fewer but larger 
suppliers, the predictive import margins will change more drastically for a given change in 
the RPM value provided the RPM is above the threshold. When RPM is below the 
threshold, for example in cheese imports, the predictive import margins are higher the less 
concentrated the destination market is.  
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From these figures we can see that, on average, trade declines quite rapidly for countries 
that enjoy positive RPM tariff preferences.  For example, when the MFN tariff of 3% on 
soybeans is applied to U.S. soybean exports to China, the RPM for U.S. soybean exports to 
China exclusive of any retaliatory tariffs is -0.68%. However, once the retaliation is enforced 
and the tariff is increased to 28%, the corresponding RPM for U.S. soybean exports to 
China becomes -25.12%, which is an extreme disadvantage for U.S. soybean suppliers 
when compared to its competitors in China.  

Figure 9 and 10 (in the Appendix) display the predictive margins of beef and pork imports 
with respect to different values of the RPM and HHI. Both the predictive margins of beef and 
pork imports in response to RPM changes tend to be larger if the importer’s market is more 
concentrated. As the RPM decreases, the predictive beef and pork imports tend to 
decrease irrespective of the change in HHI. But the rate of decrease is declining. In other 
words, when the tariff becomes prohibitive, the predicted imports due to change of tariff 
(and RPM) will be small irrespective of the market concentration index. For example, when 
U.S. pork product exports to Mexico are duty free under NAFTA, the RPM for U.S. pork 
products is positive 5.95%, much greater than its competing suppliers in the Mexican 
market. However, if the retaliatory tariff of 20% is added, the corresponding U.S. pork 
exports to Mexico drops to a negative value of -14.45%, erasing the preferential advantage 
the U.S. enjoys in the Mexican market. In this case, predictive trade marginal effects of pork 
imports is significant as the RPM decreases from a positive value to a negative value.  

To see how the Mexican tariff on U.S. pork could possibly wipe out the NAFTA benefit, we 
also plot the predictive margins of pork imports with respect to country adjacent status 
(ADJ=1 if the importer and exporter share a common border, otherwise zero) and regional 
trade agreement status (RTA=1 if they share a common regional trade agreement, 
otherwise zero).  

In Figure 11 (in the Appendix) we can see that the predicted pork imports are significantly 
higher for the bilateral pairs that share a common border and those that share a common 
RTA. Typically, given zero tariff rate, the average predicted imports of pork products will be 
$135 million ($74.2 million) for bilateral pairs with a RTA (a common border), as compared 
to $28.5 million ($19.5 million) for those without a RTA (a common border). The benefits 
from having a common border and a common RTA gradually fade out as the tariff increases 
(RPM decreases). For instance, at the RPM of -14.45%, the average predicted imports of 
pork products become $24.4 million ($23.4 million) for bilateral pairs with a RTA (a common 
border), as compared to $8.9 million ($8.4 million) for those without a RTA (a common 
border). The retaliatory tariff imposed by Mexico on U.S. pork products will likely eliminate 
the benefits that the U.S. enjoys under NAFTA.   

V. Conclusion 

Trade elasticities are a significant determinant of the size and nature of trade adjustments to 
policy shocks that can influence a nation’s terms-of-trade, welfare distribution, and 
productivity growth. Previous studies have examined the diverse methods and data 
coverage for estimating trade elasticities. However, many of them have not been updated to 
more recent trade data and more disaggregated product levels. In this report, we use 
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recently collected tariff data to estimate trade elasticities of grains, oilseeds, cotton, pork, 
beef, apples and cheese which face tariff retaliation by China and Mexico against U.S. 
Section 232 and 301 of U.S. trade law.  

Our results show that most of these crop and meat imports are significantly price elastic, 
and generally larger than what has been estimated previously.  Thus, in today’s trade 
environment for which China and Mexico are large players, the results suggest that 
products from different countries are quite substitutable with higher substitution effects 
among foreign sources in the destination markets as relative prices change. Further for 
some products, as the destination market becomes more concentrated reflecting fewer 
competing suppliers, their trade elasticities tend to be even higher and competition for 
market share increases.   

Generally, the predictive margins of soybean, wheat, corn, rice, sorghum, cotton, cheese, 
apples, beef and pork imports decrease with increases in tariffs and decrease with less 
advantageous preferential margins at all levels of market concentration. Overall, trade 
declines quite rapidly for countries that enjoy positive RPM tariff preferences. Thereafter 
moving from smaller negative to larger negative RPM values results in less severe trade 
flow changes. At a given RPM, the average predictive margins of these imports are higher 
the more concentrated the destination market is. This means that market concentration 
affects our interpretation of trade elasticities and predicted trade changes and ignoring 
competition in market structure may lead to biased and inconsistent policy implications. 

To put the above analysis in policy context, we also discussed how China’s and Mexico’s 
retaliatory tariff would impact their imports from the U.S. in the long run and how free trade 
agreements and country adjacent land border status can significantly affect trade as in the 
case of U.S.-Mexico relationship. Given the increase of China’s tariff on U.S. grains, 
oilseeds, cotton, cheese, apple, beef and pork products, the corresponding RPM of U.S. 
product exports to China will decrease from marginally negative value to a more significant 
negative value, putting the U.S. in a much worse position in the Chinese soybean import 
market relative to its competing suppliers. Pairwise, given the increase of Mexico’s tariff on 
U.S. pork products, the corresponding RPM of U.S. products will decrease from a large 
positive value to a negative value, leads to a significant drop in predicted trade between 
Mexico and the U.S. as relative prices change due to retaliatory tariffs. Moreover, due to the 
retaliation, the duty free benefit between Mexico and the U.S. under NAFTA would be 
eliminated. 

In conclusion, our results are consistent and significant in accordance with the trade and 
import demand literature. Micro-based trade elasticities provide instructive policy 
implications for agricultural farmers and policymakers, and closely connects to the current 
debate of tariff retaliation. However, the estimated trade elasticities are not without some 
caveats. First, by utilizing the cross sectional tariff variation, we are able to estimate import 
demand elasticities on a global average. Second, in this analysis, we only consider the 
direct effect of tariff change without recognizing the indirect effect that may affect the trade 
value through other channels. For example, given the increase of tariff imposed on U.S. 
products, the market concentrations of these products in China and Mexico are likely to 
change as they may look for other importing sources to fulfill their large import demand. 
Instead, we simply hold the HHI fixed when calculating the predictions. Third, the RPM for 
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all competing suppliers in a destination market will change as tariffs imposed by the 
importer changes. For simplicity, we hold the RPM fixed for all other competing suppliers 
and assume only the RPM for the U.S. as an exporter of interest is changing. However, this 
assumption should not alter the main conclusions of our results as the direction and trend of 
the predicted trade changes for a given change in the RPM are consistent. 
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Appendix  

Figure 1: Predictive Margins of Soybean Imports 

For top 75 countries For top 5 exporters 

 

Figure 2: Predictive Margins of Wheat Imports 

For top 75 countries  For top 5 exporters  
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Figure 3: Predictive Margins of Corn Imports 

For top 75 countries   For top 5 exporters  

 

Figure 4: Predictive Margins of Rice Imports 

For top 75 countries   For top 5 exporters  
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Figure 5: Predictive Margins of Sorghum Imports 

For top 75 countries   For top 5 exporters  

 

Figure 6: Predictive Margins of Cotton Imports 

For top 75 countries   For top 5 exporters  
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Figure 7: Predictive Margins of Cheese Imports 

For top 75 countries  For top 5 exporters  

 

Figure 8: Predictive Margins of Apple Imports 

For top 75 countries   For top 5 exporters  
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Figure 9: Predictive Margins of Beef Imports 

For top 75 countries   For top 5 exporters  

 

Figure 10: Predictive Margins of Pork Imports 

For top 75 countries   For top 5 exporters  
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Figure 11: Predictive Margins of Pork Imports based on ADJ and RTA 

For top 75 countries For top 75 countries 

 


