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Introduction 
Salmonella contamination in dry and low-moisture 
food processing environments is a food safety 
concern recognized by the FDA, with the organism 
being responsible for an estimated 94% of recalls of 
low water activity foods in the United States 
(Santillana Farakos and Frank 2014). Salmonella 
makes its way into dry and low-moisture processing 
environments in ways that are similar to what is seen 
in higher moisture processing environments, 
including via raw materials (e.g., packaging 
materials, ingredients), air (e.g., air handling 
systems, receiving areas), water (e.g., sanitation), 
equipment or tools, employees or visitors, and pests 
(Beuchat et al. 2011), as shown in Figure 1.  

 

 

Figure 1. Routes of contamination of low water 
activity products by Salmonella. 

For a microorganism to grow in a food processing 
environment, there must be enough available 
moisture for the organism to use. In a dry or low-
moisture processing environment, there are typically 
not enough consistent sources of moisture for 
microorganisms to grow; however, Salmonella has 

shown the ability to adapt to this low-moisture stress 
and survive for long periods of time, sometimes 
gaining the ability to withstand other stressors as 
well (termed “cross-tolerance”) (Finn et al. 2013).  

Adaptive Behaviors Used 
by Salmonella 
Salmonella has been shown to use several behaviors 
to adapt to stressors and survive in dry or low-
moisture environments, including accumulation of 
osmoprotectants, up-regulation of outer membrane 
porins, alteration of gene expression, rRNA 
degradation, entering a viable but not culturable 
state, filamentation, and biofilm formation (Finn et 
al. 2013). 

Osmoprotectants 
When Salmonella is exposed to a low water activity 
environment, the organism needs to balance the 
osmolarity of its internal cell composition with that 
of the external environment (Malakar et al. 2022). In 
a dry or low-moisture environment, the solute 
concentration on the outside of the bacterial cell is 
higher than inside (termed “hypertonic”), often 
resulting in extreme water loss and shriveling of the 
organism (Figure 2). 
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Figure 2. Types of osmotic balance conditions 
(Malakar et al. 2022). 

One of the ways Salmonella prevents this water loss 
is by using osmoprotectants (Finn et al. 2013, Li et 
al. 2012). Osmoprotectants are small, neutral 
molecules that are non-toxic at high concentrations. 
Salmonella can increase the internal amount of 
osmoprotectants by either synthesizing them 
internally or by transporting them from the 
environment into the cell. Salmonella can do this in 
as little as six minutes after the introduction of the 
stressor (Balaji et al. 2005).  

Outer Membrane Porins 
(OMPs) 
OMPs are proteins that extend across the outer 
membrane of the bacterial cell that help promote the 
passive diffusion of osmoprotectants into the cell 
(Figure 3).  

 

Figure 3. The outer membrane porins OmpC and 
OmpF (Kenney 2006). 

Under dry or low-moisture stress, Salmonella 
expresses two OMPs to bring osmoprotectants into 
the cell within twelve minutes of the stressor being 
introduced (Balaji et al. 2005, Feng et al. 2003, 
Wang et al. 2012). 

Alternative Sigma Factors 
Salmonella possesses a variety of genes that, when 
expressed, will result in the production of molecules 
(e.g., proteins) that provide advantages to the cell 
under certain environmental conditions or stressors. 
The expression of these stress response genes is 
dependent on the specific environment the cell is in 
and is regulated by alternative sigma factors. When 
Salmonella is stressed in a low-moisture 
environment, alternative sigma factors will up-
regulate the expression of genes that allow 
Salmonella to survive (McMeechan et al. 2007).    

Ribosomal RNA (rRNA) 
Degradation 
rRNA is essential to genetic expression, and 
therefore the function, of a living organism 
(Basturea et al. 2012, Deng et al. 2012). Under 
stress, Salmonella has been shown to increase rRNA 
degradation, which is the removal of rRNA 
components that are not immediately functionally 
required under an unfavorable environment. The cell 
may then enter a partially dormant state, wherein it 
is still metabolically active but has been shown to 
express about 5% of its total genes to modulate its 
environment to prolong survival in dry or low-
moisture environments (Lewis 2007, Deng et al. 
2012).   

Viable But Not Culturable 
(VBNC) State 
Under certain stress conditions, Salmonella has been 
shown to induce a “viable but not culturable” state 
(Oliver 2010, Gruzdev et al. 2012, Jayeola et al. 
2022). Organisms in a VBNC state are metabolically 
inactive while in an unfavorable environment. 
Though inactive, the organism can preserve viability 
and regrow when resuscitated (Gupte et al. 2003), 
such as when reintroduced to a high-moisture 
environment.  

Filamentation 
Filamentous Salmonella cells are produced in 
response to environmental stress, preventing normal 
cellular division (Pratt et al. 2012). Formation of 
these filamentous cells presents a challenge in the 
processing environment as it adds to Salmonella’s 
biomass without increasing the detectable number of 
individual cells, which means that cell counts may 
underestimate how many cells are present. When 
Salmonella’s environment becomes favorable, these 
filamentous cells can rapidly divide to become 
viable cells that can potentially cause human illness 
(Mattick et al. 2000). 

Biofilm Formation 
Under certain conditions, Salmonella may produce 
biofilms to protect against excessive water loss 
under stress (White et al. 2006, Stocki et al. 2007). 
The adherence ability of Salmonella biofilms may be 
reduced depending on the surface (Giaouris and 
Nychas 2006); however, biofilm production has 
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been shown to offer cross-protection against other 
environmental stressors (e.g. pH and heat).   

Application to Food 
Processing Environments 
Consideration of how a low water activity state was 
achieved (e.g., through thermal or non-thermal 
drying methods) may help predict trends in 
Salmonella behaviors observed in processing 
environments, such as increased resistance to heat or 
sanitizers and proficiency of biofilm formation. 
Incorporation of this information into hazard 
analyses and control plans may allow for the 
optimization of production practices aimed at 
mitigating the organism’s survival.  

Additional research is necessary to better understand 
ways Salmonella adapts to these environments for 
the purpose of developing effective mitigation 
strategies through a combination of bench-style, 
applied, and intervention-specific experiments. 
Research using methods to simulate food industry 
environments is needed to provide a better 
understanding of how specific Salmonella serovars 
behave in commodity-specific production settings 
(e.g., Salmonella enterica serotype Typhimurium in 
dried coconut, Salmonella enterica serotype 
Senftenberg in peanut butter). Food businesses 
should also work to collaborate with university and 
Cooperative Extension services to use experiential 
data collected at industry scale (such as from 
environmental monitoring programs or monitoring 
data) to predict and adapt in real-time to the 
changing landscape of Salmonella survival in dry 
and low-moisture environments. 
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